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Abstract
We present a detailed study of the spectral properties of a locally correlated site
embedded in a Bardeen–Cooper–Schrieffer (BCS) superconducting medium.
To this end the Anderson impurity model with a superconducting bath is
analysed by means of numerical renormalization group calculations. We
calculate one-and two-particle dynamic response functions to elucidate the
spectral excitations and the nature of the ground state for different parameter
regimes with and without particle–hole symmetry. The position and weight
of the Andreev bound states is given for all relevant parameters. We present
phase diagrams for the different ground state parameter regimes. This work is
also relevant for dynamical mean field theory extensions with superconducting
symmetry breaking.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As described by Bardeen, Cooper and Schrieffer (BCS) [1] electrons in condensed matter with
an attractive interaction assume a superconducting state below a critical temperature, referred
to as the BCS state. In this state electrons with antiparallel spins form singlet bound states
(S = 0) known as Cooper pairs. This pair formation is a fermionic many-body phenomenon as
it relies on the existence of a Fermi surface [2]. A singlet ground state due to many-body effects
also occurs in a quite different situation, when a magnetic impurity is embedded in a metallic
host [3, 4]. This state, known as a Kondo singlet, occurs because the electrons in the metal
at low temperature experience a large effective coupling to the localized impurity spin. As a
consequence it is energetically favourable to screen the local moment, resulting in a (Kondo)
singlet state (S = 0).

The BCS superconductivity and the Kondo effect are important topics in their own right,
and have been extensively studied by the condensed matter physics community. The interplay
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and competition of these two effects have also attracted a lot of interest because metals with
magnetic impurities can be superconducting at low temperatures [5–10]. The problem of
dealing with the two effects together is complicated because the magnetic impurities have
a disruptive effect on the BCS superconducting state and the Kondo singlet formation leads
to a breaking of the Cooper pairs. For a recent review on this topic we refer to [11] and
references therein. Here we address a particular aspect of the problem which has not so far
received much attention, the effects of the superconductivity on the local spectral properties
of the impurity. As in earlier studies, we take the BCS superconductor as a fixed reference
system and take as a model for the impurity an interacting Anderson model. We employ the
numerical renormalization group method (NRG), which is a reliable approach to calculate low
temperature spectral functions.

From earlier studies of this model, we know that if the interaction U at the impurity site
is weak, the ground state is dominated by the superconducting behaviour and the singlet is
predominantly a superconducting one. However, if there is a strong repulsion at the impurity
site, such that single occupation is favoured, we have a situation where a single spin is coupled
to the superconducting medium. If the superconducting gap �sc is very small then, similar
to the case with a normal metallic bath, the ground state is a singlet, more specifically a
Kondo singlet. If this gap is increased, however, it is not possible to form a Kondo singlet,
due to the lack of states in the vicinity of the Fermi level, and the ground state becomes a
doublet (S = 1/2), corresponding to an unscreened spin at the impurity site. This ground
state transition at zero temperature is an example of a quantum phase transition which occurs
for a level crossing that depends on a system parameter [12]. The relevant energy scales for
this singlet–doublet transition to occur in the Kondo regime are the Kondo temperature TK and
the superconducting gap �sc. The Kondo model [13, 14] as well as the Anderson impurity
model [15] with superconducting bath has been studied by NRG. In these works the estimate
for the ground state transition is given by TK/�sc � 0.3, i.e. for TK/�sc > 0.3 we have a
singlet ground state (S = 0) while for TK/�sc < 0.3 the ground state is a doublet. We can also
consider the transition for a fixed value of �sc and increasing values of the local interaction
U . In this case, as U increases in the local moment regime, TK decreases until the singlet to
doublet transition occurs at a critical value U = Uc.

Due to the proximity effect there is an induced symmetry breaking on the impurity site. As
a consequence localized excited states (LES) inside the superconducting gap can be induced
at the impurity site. Such states are well known from superconductor–normal–superconductor
(SNS) junctions and are usually called Andreev bound states. For a weak on-site interaction
the ground state of the system is usually a superconducting singlet (S = 0) and the LES is an
S = 1/2 excitation. It is found that at the ground state transition the bound state energy of the
LES becomes zero as measured from the centre of the gap. This is related to the fact that the
level crossing occurs there.

In recent years detailed measurements on quantum dot structures have enabled one to probe
strong correlation effects [16, 17]. In these experiments a quantum dot is coupled to two leads,
which can be superconducting. In such situations finite voltage induced currents [18–21] and
Josephson currents [22], induced by a phase difference, were observed experimentally. For
a theoretical description of this situation it is important to characterize the Andreev bound
states in the gap accurately. Many of the more recent theoretical papers [23–30], focus on a
quantum dot embedded in two superconducting baths with different (complex) superconducting
order parameters. These situations with two channels and with Josephson or non-equilibrium
currents will, however, not be covered in this paper.

For the analysis presented here, which focuses on the spectral properties of locally
correlated electrons in the superconducting bath, we use the NRG approach. We start by
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outlining some of the details of the NRG calculation with a superconducting medium in
section 2. We also describe an analysis of the Andreev bound states in the gap in terms of
renormalized parameters, and discuss the limit of a large gap. In section 3 we present results
first for the model with particle–hole symmetry. For low energies within the superconducting
gap we calculate the position and weight of the LES and also give the values for the induced
anomalous on-site correlation. We also present singlet–doublet ground state phase diagrams
for the symmetric and non-symmetric cases. As the study is based on NRG, it is capable of
describing the full parameter range from weak to strong coupling reliably. There have been
a number of NRG studies of this situation in the past [13–15, 27]. However, the dynamic
response functions have not been addressed in a satisfactory way. Here we present a thorough
study of ground state and spectral properties, which will also be of interest for cases where
the Anderson model is used as an effective impurity model in the dynamical mean field theory
(DMFT) framework, e.g., when superconductivity is studied in the attractive Hubbard model.

2. The Anderson impurity model with superconducting medium

In the following we consider the Anderson impurity model (AIM) in the form

H = Hd + Hmix + Hsc. (1)

The local part Hd , which describes an impurity or quantum dot, is given as usual by

Hd =
∑

σ

(εd + 1
2 U)c†

d,σ cd,σ + 1
2 U

(∑

σ

c†
d,σ cd,σ − 1

)2

(2)

with the impurity level εd and an on-site interaction with strength U . Also the mixing term has
the usual form,

Hmix =
∑

k,σ

V (c†
k,σ cd,σ + h.c.). (3)

We define � = πV 2ρc as the energy scale for hybridization, where ρc = 1/2D is the
constant band density of states of a flat band without superconducting symmetry breaking.
The superconducting medium is given in a BCS mean field form

Hsc =
∑

k,σ

εkc†
k,σ ck,σ − �sc

∑

k

[c†
k,↑c†

−k,↓ + h.c.], (4)

where �sc is the isotropic superconducting gap parameter, which is taken to be real for
simplicity. In equation (4) the summations runs over all k in a wide band. Another energy
scale ωD, the Debye cut-off in BCS theory, could enter at this stage to restrict the summation.
As shown in [13] with a scaling argument, this effect does not alter the results substantially
and merely leads to slightly different parameters. The choice here corresponds to ωD = D,
which was also assumed in earlier work [13, 15]. In appendix A we derive the equation for the
non-interacting local d-site Green’s function matrix of the system (A.10).

2.1. The numerical renormalization group (NRG) approach

For the NRG approach we have to derive a discrete form of the Hamiltonian, which can be
diagonalized conveniently in a renormalization group scheme descending to lower energies.
This is done in an analogous fashion as for a metallic medium described in [31, 32]. Essentially,
there are three steps which only affect Hmix and Hsc: (1) mapping to a one-dimensional
problem, (2) logarithmic discretization and (3) basis transformation. We obtain

Hmix/D =
√

2�

π D

∑

σ

( f †
0σ cd,σ + h.c.), (5)
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and

H N
sc /D =

N∑

σ,n=0

γn+1( f †
nσ fn+1,σ + h.c.) − �sc

D

N∑

n=0

( f †
n↑ f †

n,↓ + h.c.), (6)

where the parameters γn have the usual form [4]. For more details we refer to earlier
work [13, 15] and a recent review on the NRG method [33].

The iterative diagonalization scheme is set up in the same way as in the standard NRG
case. Due to the anomalous term in the superconducting bath H N

sc the charge Q is not a good
quantum number of the system. Thus eigenstates can only be characterized in terms of the spin
quantum number S. The coefficients γn fall off with n, but the second term in (6) does not.
Thus the superconducting gap becomes a dominating energy scale for large n and a relevant
perturbation. It does not make sense to continue NRG iterations down to energies much below
this scale as there are no continuum states anymore in the gap. Therefore, we stop the NRG
procedure at an iteration N = Nmax, such that the typical energy scale 
−(Nmax−1)/2 is not much
smaller than the superconducting gap �sc. In practice, we chose the minimum for this ratio to
be 10−3 such that the number of NRG iterations Nmax is between 20 and 50 depending on the
magnitude of the gap. We used 
 = 1.8 in all cases, keep 800 states per iteration and the A


factor [32] is taken into account in the calculations.
The NRG approach constitutes a reliable non-perturbative scheme to calculate T = 0

ground state properties of a local interacting many-body problem. By putting together
information obtained from different iterations dynamic response functions can also be
obtained [4]. Here we calculate these spectral functions in the approach [34, 35] based on the
complete Anders Schiller basis [36]. The Green’s function of the interacting problem is given
by the Dyson equation (A.12), which involves the self-energy matrix �(ω). In appendix B we
describe how the diagonal part of the self-energy �(ω) = �11(ω) and the off-diagonal part of
the self-energy �off(ω) = �21(ω) can be calculated from dynamic response functions in the
NRG calculation, which is in analogy to the method described in [37].

2.2. The Andreev bound states

The denominator of the d-site Green’s function, equation (A.12), can vanish inside the gap
|ω| < �sc. As the imaginary part of the self-energy is zero in the gap this leads to excitations
with infinite lifetime there. They correspond to the localized excited states (LES) or Andreev
bound states. For the non-interacting case they are determined by the equation D(ω) = 0
(cf equation (A.11)),

ω2 − ε2
d − �2 + 2ω2�

E(ω)
= 0, (7)

where the function E(ω) is given in equation (A.8). The terms in equation (7) are functions of
ω2, so if E0

b is a solution so is −E0
b . In general, in the interacting case we have to analyse the

equation
[
ω − εd + ω�

E(ω)
− �(ω)

] [
ω + εd + ω�

E(ω)
+ �(−ω)∗

]

−
[

��sc

E(ω)
− �off(ω)

] [
��sc

E(ω)
− �off(−ω)∗

]
= 0. (8)

Once the self-energies are calculated it is possible to solve this equation iteratively. Here, we
will develop a simplified description by using a low energy expansion of the self-energy. First
recall that in the gap, |ω| < �sc, Im�(ω) = Im�off(ω) = 0. We expand the real part of the
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diagonal self-energy �(ω) to first order around ω = 0, which is motivated by the Fermi liquid
expansions for the normal metallic case and justified by the numerical results for the behaviour
for low frequency. The off-diagonal self-energy is approximated simply by the real constant
�off(0). This approximation for the self-energy is easy to justify if the gap is small parameter,
such that it only covers small values of ω. The main objective is to present a simplified picture
for the analysis of the Andreev bound state for the interacting system. We do not expect to be
able to describe the system near the quantum phase transition accurately like this, and other
limitations will be seen in the results later. Hence, we find instead of (8) the simpler equation

ω2 − ε̃2
d − �̃2 − z2�off(0)2 + 2�̃[ω2 + �scz�off(0)]

E(ω)
= 0, (9)

where renormalized parameters ε̃d = z[εd + �(0)] and �̃ = z� were introduced. As usual
z−1 = 1 − �′(0). Renormalized parameters for the analysis of the Andreev bound states were
also considered in [25, 38]. The definition here corresponds to the renormalized perturbation
theory framework for the AIM introduced in [39]. The form of the equations (7) and (9)
is very similar and both can be easily solved numerically to give the bound state solutions
ω = Eα

b = αEb, α = ±. Due to the additional off-diagonal correlations induced by
the self-energy term �off(0), a simple interpretation of the interacting theory based on using
renormalized parameters ε̃d , �̃ in equation (7) for the non-interacting theory is, however, not
possible.

Based on the same idea we can give approximate expressions for the weights of the bound
states wα

b by expanding the diagonal part of the Green’s function around ω = Eα
b . We can then

write the retarded Green’s function in the gap near the bound states ω � ±Eb as

G(ω) = w−
b

ω − E−
b + iη

+ w+
b

ω − E+
b + iη

. (10)

Using the above approximation for the self-energy the weights are found to be

wα
b = z

2
E(Eb)

2
E(Eb)(1 + α ε̃d

Eb
) + �̃

E(Eb)2(E(Eb) + 2�̃) + �̃(E2
b + �scz�off(0))

. (11)

In a more sophisticated approximation one could consider an expansion of the self-energies
around the bound state energies Eb rather than ω = 0. Various things can be inferred
from expression (11). First we note that in the particle–hole symmetric case, ε̃d = 0,
w+

b = w−
b = wb. The weights are proportional to the renormalization factor z. Since z shows

a similar behaviour as in the metallic lead case they decrease with increasing interaction U
according to (11). One can easily see that for bound state energies close to the gap, |Eb| → �sc,
the weights go to zero, wα

b → 0. One finds [15] that for small U/π� and �sc/� � 1 we have
Eb → �sc, and also for large U/π� the bound state energy is close to the gap. Therefore the
overall behaviour for wb is given in such a case by wb → 0 for small U , then an increase with
U to a maximum and a decay again for large U (cf figure 3 later). At the ground state transition,
where Eb = 0, the weight shows a discontinuity, and from equation (11) this requires a jump
of the self-energy as function of U .

2.3. The limit of large gap

In order to obtain some analytical results it is useful to consider the case where the
superconducting gap is a large parameter, �sc → ∞ [25, 28, 30, 40]. Then the problem

5
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essentially reduces to a localized model with an anomalous on-site term which is of the order
of the hybridization �. We will write it in the form

H ∞
d =

∑

σ

ξd(c
†
d,σ cd,σ − 1) − �[c†

d,↑c†
d,↓ + h.c.] + U

2

(∑

σ

nd,σ − 1

)2

, (12)

where ξd = εd + U/2. Without interaction this Hamiltonian can be diagonalized by a

Bogoliubov transformation and the excitation energies Ed =
√

ξ 2
d + �2 are found, which lie in

the gap as � � �sc as assumed initially. This gives a direct picture of the emergence of the
Andreev bound states for large �sc.

We can discuss the ground state crossover from the singlet to the doublet state in terms
of the single-site Hamiltonian (12). First note that the S = 1/2 (doublet) states, |↑〉 and |↓〉,
are eigenstates of (12) with zero energy. The S = 0 singlet states, empty site |0〉 and doubly
occupied site |↑↓〉, are not eigenstates of (12). However, the linear combinations in the ‘BCS
form’,

|�1〉 = ud |0〉 + vd |↑↓〉, |�2〉 = vd |0〉 − ud |↑↓〉, (13)

are eigenstates with eigenvalues E1 = −Ed + U/2 and E2 = Ed + U/2, respectively. The
coefficients ud, vd are given by

u2
d = 1

2

(
1 + ξd

Ed

)
, v2

d = 1

2

(
1 − ξd

Ed

)
. (14)

The ground state is therefore a singlet as long as E1 < 0 and a doublet otherwise. The condition
E1 = 0 or

ξ 2
d

U 2
+ �2

U 2
= 1

4
(15)

defines therefore the phase boundary for the transition. It is a semicircle in the (ξd/U)–(�/U)-
plane with radius 1/2, which is shown in figure 12 later. How this phase boundary looks like
for finite gap �sc will be investigated in section 3.2, when we look at the situation away from
particle–hole symmetry. In the case of particle–hole symmetry ξd = 0 and condition (15)
reduces to � = U/2.

Having established the formalism and the most important relations we will in the next
section present results for spectral behaviour of the symmetric AIM with superconducting bath
with a finite gap parameter.

3. Results

In this section we present results for the local spectral properties. The diagonal and off-diagonal
Green’s functions are calculated within the NRG framework usually from the Lehmann
representation,

ρd(ω) = 1

Z

∑

m,n

|〈m|c†
d |n〉|2δ[ω − (Em − En)](e−βEm + e−βEn ), (16)

and similar for the off-diagonal Green’s function. As in this procedure the discrete excitations
for the spectral peaks in the Green’s functions have to be broadened, it is not straight forward
like this to obtain the sharp spectral gap at |ω| = �sc expected for T = 0. As detailed in
appendix B, we can, however, determine the self-energy matrix from the one-particle Green’s
function and the higher F-Green’s function (cf equation (B.4)). Then we can use the exact
expression for the non-interacting Green’s function G0

d(ω) in equation (A.10), which includes

6
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Figure 1. The spectral density ρ(ω) for various values of U for the whole energy regime (left) and
the region in the gap (right); �sc = 0.005 and π� = 0.2.

a sharp spectral gap, and the Dyson matrix equation (A.12) to calculate the diagonal and
off-diagonal Green’s function, G(ω) and Goff(ω) respectively. This is the way the Green’s
functions are calculated for the region outside the gap, |ω| > �sc. Inside the gap, |ω| < �sc,
we have extracted the weights wb and positions Eα

b of the delta function peaks for the Andreev
bound states from the NRG excitation data for the Green’s function directly from the lowest
spectral excitation (SE) in equation (16). These delta functions are represented by an arrow in
the plots. Altogether the diagonal spectral function ρ(ω) = −ImG(ω)/π can then be written
in the form

ρ(ω) =
∑

α=±
wbδ(ω − Eα

b ) + ρcont(ω), (17)

where ρcont(ω) is the continuum part for |ω| > �sc. The off-diagonal part of the spectrum
ρoff(ω) = −ImGoff(ω)/π has a general form which is similar to that of the diagonal part,

ρoff(ω) =
∑

α=±
w̄α

b δ(ω − Eα
b ) + ρoff

cont(ω), (18)

where the weights w̄α
b can have positive and negative values. For half filling the spectrum

ρoff(ω) is an asymmetric function of ω.

3.1. Symmetric model

We first focus on the particle–hole symmetric model, εd = −U/2, where the ratio U/π� and
the parameter �sc are the relevant energy scales.

3.1.1. Spectral functions for small gap. In figure 1 we show the spectral function (17) for
�sc = 0.005 for the diagonal Green’s function at the impurity site for a number of different
values of U . Here and in the following we take a fixed value for the hybridization, π� = 0.2.
All quantities can be thought of as being scaled by half the band width D = 1.

In the plot on the left-hand side we give the spectrum over the full energy range. When
the interaction is increased, spectral weight is shifted to higher energies as the atomic limit
peaks at ±U/2 develop. We also observe the beginning of the formation of a Kondo resonance
at low frequencies. For larger U the Kondo resonance becomes narrower, but its formation
is suppressed in the very low frequency regime because the spectral density vanishes in the

7



J. Phys.: Condens. Matter 19 (2007) 486211 J Bauer et al

Figure 2. The spectral density ρoff(ω) for various values of U for the whole energy regime (left)
and the region in the gap (right); �sc = 0.005 and π� = 0.2.

gap region −�sc < ω < �sc. This is not visible on the scale used in the left-hand panel of
figure 1. In the right-hand panel of figure 1 we give an enlarged plot of the gap region, which
shows the delta function contributions from the Andreev bound states, where the arrows give
the position of the bound state E±

b and their height indicates the spectral weight wb. It can be
seen that the position of the bound state changes when we increase the interaction. The weight
first increases and then decreases as a function of U , which corresponds to the feature which
was interpreted earlier using equation (11). It is generally of interest to see how much spectral
weight is transferred from the continuum to the bound states, and an overview for this is given
in the later figures 8 (right) and 9. Note that the largest value of U shown, is greater than the
critical Uc for the singlet–doublet transition (Uc/π� � 3.2). In the high energy spectrum there
is no significant change to be seen in the behaviour, however, at low energies we observe the
crossing of the bound state energies at ω = 0 at Uc.

In figure 2 we show the off-diagonal spectral function (18) for �sc = 0.005 for a number of
different values of U . In the plot on the left-hand side we show the behaviour for the continuum
part outside the gap. Notice that the frequency range only extends up to ω = ±0.1. We can
see a peak close to ω = ±�sc, which is suppressed for larger U and changes sign towards the
singlet–doublet transition. The behaviour of the bound state peaks in the off-diagonal spectrum
is displayed on the right-hand side of the figure. We can see similar features as observed before
in the diagonal part, i.e. the weight first increases with U and then decreases. If we follow the
excitations with the weight of the same sign we can see, that at the singlet–doublet transition
the bound state levels cross at ω = 0.

3.1.2. Bound state behaviour. A more detailed analysis of the behaviour of the bound state as
a function of U/π� and the gap in the medium �sc is presented in figure 3. On the left-hand
side we plot the bound state energies ±Eb and on the right-hand side the corresponding weights
wb.

We can see that in the non-interacting case the bound state energy for the cases with small
gap (�sc = 0.001, 0.01) is very close to ±�sc and decreases to zero with increasing interaction.
For a critical value Uc the nature of the ground state changes from a singlet (S = 0) to a doublet
(S = 1/2) and at this point Eb = 0. For this transition we can think of the positive E+

b and
negative solution E−

b for the bound states as crossing at ω = 0. When the interaction is
increased further,

∣∣E±
b

∣∣ becomes finite again and increases with U . The larger the gap �sc the

8
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Figure 3. Bound state energies Eb (left) and weights wb (right) for various U/π� and �sc. Both
quantities have been scaled by the corresponding value of �sc; π� = 0.2.

smaller critical value Uc for this ground state transition becomes. In the case where �sc is of
the order of �—as can be seen for the case �sc = 0.06—the bound state energy Eb lies in the
middle of the gap already for the non-interacting case, but otherwise shows a similar behaviour
as described above.

On the right-hand side of figure 3 the weight wb of these bound states can be seen. We
have marked the position Uc of the singlet–doublet crossover point by a symbol on the x-axis.
The two curves for a value of the gap �sc = 0.001 and �sc = 0.01 have a maximum for some
intermediate value of U which is smaller than the critical Uc for the ground state transition.
This behaviour can be understood from the analytic behaviour of the explicit equation (11)
derived earlier. For the other curve (�sc = 0.06) the weight is maximal for the non-interacting
case. In all cases the weight becomes very small for large U . Note that we plot the weight
scaled by the gap parameter, wb/�sc, and therefore the absolute values are larger for the cases
with larger superconducting gap. At the singlet–doublet transition we can see discontinuous
behaviour as the weight changes sharply. This is a feature of the zero temperature calculation,
where the matrix elements in the Lehmann sum (16) change their values discontinuously when
the levels cross on increasing U , such that the nature of the ground state changes. It can be
seen for the anomalous correlations 〈d↑d↓〉 in figure 8 later, as well. For finite temperature this
discontinuity becomes smooth.

3.1.3. Spectral functions for larger gap. In figure 4 we show for comparison the diagonal
spectral function for a larger gap �sc = 0.02 for the diagonal Green’s function at the impurity
site for a number of different values of U . The overall picture on the left is similar to the case
in figure 1 with the smaller gap. Due to the larger gap the formation of the central Kondo
resonance is completely suppressed, but the high energy spectrum is as before. From the
behaviour within the gap (right side in figure 4) we can see that the bound state position E±

b
goes to zero for smaller U values than in the case �sc = 0.005, and hence the ground state
transition occurs for smaller Uc for the larger gap (Uc/π� � 2.03). This was analysed in detail
in figure 3. For the values of U shown the spectral weight of the bound states wb decreases with
increasing U . The weight wb of the peaks in the gap has been scaled differently in figures 1
and 4, so that their height should not be compared directly.

The spectral function of the off-diagonal Green’s function at the impurity site (18) for this
value of the gap, �sc = 0.02, is shown in figure 5 for a number of different values of U .

9
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Figure 4. The spectral density ρ(ω) for various values of U for the whole energy regime (left) and
the region in the gap (right); �sc = 0.02 and π� = 0.2.

Figure 5. The spectral density ρoff(ω) for various values of U for the whole energy regime (left)
and the region in the gap (right); �sc = 0.02 and π� = 0.2.

For larger frequencies outside of the gap (left) we can see a peak near ω = �sc, whose
height is reduced on increasing U . At larger frequencies we find that the tails develop a broad
peak for larger values of U . This has not been observed in the case with the smaller gap shown
in figure 2. Also a sign change of the low energy peak is found as before. The behaviour near
and in the gap (right) can be understood as before, where in this case we have shown two values
of U with a singlet ground state and two with a doublet ground state.

3.1.4. Analysis of bound states with renormalized parameters. In section 2 we have discussed
how the bound state energy, which so far was deduced from the spectral excitations (SE), can
also be calculated from the bound state equation (BE) (8). The latter was derived by expanding
the self-energy to first order. It involves the renormalized parameters ε̃d , �̃ and the constant
value of the off-diagonal self-energy �off(0). In figure 6 we compare the bound state energies
calculated by these two methods for two values of the gap �sc = 0.005 (left) and �sc = 0.06
(right). We can see that for values of U < Uc the agreement is excellent in both cases. However,
when U � Uc we find less accurate values with the method based on bound state equation (BE)
with renormalized parameters. Since the method to calculate the bound state energy from the
NRG spectral excitations (SE) is very accurate we expect inaccuracies to be found in the BE

10
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Figure 6. Bound state energies Eb as calculated from the spectral excitations (SE) and from
the bound state equation (BE) (8) with renormalized parameters for �sc = 0.005 (left) and for
�sc = 0.06 (right) for various U/π�; π� = 0.2 is fixed.

Figure 7. Weights wb for the Andreev bound states as calculated from the spectral excitations (SE)
and from the equation (11) with renormalized parameters for �sc = 0.005 (left) and for �sc = 0.06
(right) for various U/π�; π� = 0.2 is fixed.

method. Indeed, the closer inspection of the numerical results for the diagonal and off-diagonal
self-energies reveals that the linear and constant approximation made in section 2.2 to derive the
bound state equation with renormalized parameters (8) becomes less applicable for U � Uc.
The self-energy displays additional features there.

In section 2 we have also derived an expression (11) for the weights wb of the bound states
in the gap. It can be expressed in terms of the renormalized parameters ε̃d , �̃, the off-diagonal
self-energy �off(0) and the bound states energy Eb. In figure 7 we compare the weights
calculated from the spectral excitations (SE) with the ones from the bound state equation
(BE) analysis with renormalized parameters. We show the results for the same parameters
�sc = 0.005 (left) and �sc = 0.06 (right).

We can see for both cases that the overall behaviour of the weights as a function of U is
described reasonably well by equation (11). It is, however, clearly visible that the agreement
is between the SE and BE values is much better in the singlet regime for U < Uc. This is
similar as observed for the values of the bound states energies Eb in figure 6, and the reason
for this is the same. The discontinuity for the weight is not reproduced by the approximation

11
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Figure 8. Left: anomalous expectation values 〈d↑d↓〉 as a function of U/π� for various �sc. The
values are scaled by the gap �sc; π� = 0.2. Right: the total weight of the bound states w in the
gap as calculated from the spectral excitations as a function of U/π� for various �sc/π�.

Figure 9. Phase diagram for singlet and doublet ground state as a function of �sc/π� and U/π�,
where the full line with large dots describes the phase boundary. The dotted line corresponds to
U/� = 2, which shows the singlet doublet transition for �sc → ∞. The dashed line gives the
transition as TK/�sc � 0.3 with TK given in equation (19). As a background colour we have
included the amount of spectral weight transferred to the bound states; the discontinuous behaviour
at the singlet doublet ground state transitions is slightly blurred in the interpolated representation.

based on equation (11). As can be seen from that equation this would require a sudden change
in the self-energy as function of U , which was not found with sufficient accuracy in the present
calculation. This can partly be attributed to the broadening procedure involved and to the
inaccuracies when calculating the numerical derivative.

3.1.5. Anomalous expectation value and phase diagram. The anomalous expectation value
〈d↑d↓〉 is an indicator for the strength of the proximity effect of the superconducting medium
at the impurity site and quantifies the induced on-site superconducting correlations. In the
following figure 8 we show the dependence of 〈d↑d↓〉 on the interaction U/π� for the same
values of �sc as in figure 3. The values are scaled by the gap �sc.
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We see that as a general trend 〈d↑d↓〉 decreases for increasing on-site interaction. This
is expected since the superconducting correlations are suppressed by the repulsive interaction.
We have marked the ground state transition with a symbol on the x-axis, and we see that
〈d↑d↓〉 changes discontinuously in magnitude and sign there. This is characteristic for this zero
temperature quantum phase transition. The sign change is due to a phase change of π of the
local order parameter which occurs at the transition as discussed in [11]. In the situation of
infinite gap in the medium, which was discussed in section 2.3, 〈d↑d↓〉 drops only to zero at
the transition point and is zero in the doublet ground state. At finite temperature the behaviour
becomes continuous.

An overview of the transfer of spectral weight from the continuum to the bound states is
shown in figure 8 (right). There we plot the total weight w = w+

b + w−
b as a function of U/π�

for four selected values of �sc/π� ranging from 0.005 to 1. The curves are similar as before
in figure 3 and show the discontinuity at the ground state transition. Here the values are not
scaled by �sc. We can see that the smaller U and the larger �sc are the more spectral weight is
found in the bound states. In the extreme case of �sc → 0 we have w = 0, and for large gap,
�sc → ∞, and small U equation (11) gives w → 1. The tendency to both of these limiting
cases can be inferred from figure 8 (right) and we can see that, for instance, for �sc = π�

already about 80% of the spectral weight is in the bound states.
Summarizing the behaviour for different parameters, we present a phase diagram for

singlet and doublet states for the symmetric model in the following figure 9.
For small U the ground state is always a singlet. It can become a doublet when U/π�

is increased. The critical Uc for the transition decreases with increasing value of the gap
�sc as can be seen in the diagram. In the limit �sc → ∞, the critical interaction is given
by Uc/π� = 2/π , which is shown with a dotted vertical line in the figure. As mentioned
in section 1 there have been estimates of the phase boundary for the singlet and doublet
ground state in the strong coupling regime [13, 15] as TK/�sc � 0.3. In this case the Kondo
temperature is given as in equation (3.9) in [15],

TK = 0.182U

√
8�

πU
e−πU/8�. (19)

We have added a dashed line representing this result which agrees with the ones presented here
in the strong coupling regime, but starts to deviate for smaller values of U . As a background
colour we have included in figure 9 how much spectral weight w is transferred to the bound
states. (The value of w is given by the colour bar on the top part of the figure.) As noted before
in figure 8 (right) we can see generally that the weight is maximal in the region of large gap
and small on-site repulsion U .

At �sc → 0 the ground state is a singlet for any value of U as the Kondo effect always
leads to a screened impurity spin in a singlet formation. For finite gap the nature of the singlet
ground state can differ depending on the magnitude of U . It can be a singlet corresponding
to an s-wave pair as in the wavefunction given in equation (13), which is a superposition of
zero and double occupation. This is the natural singlet ground state for a BCS superconductor.
In the strong coupling regime we can, however, also have a screened local spin, i.e. a Kondo
singlet. The wavefunction has a different form then and consists rather of a singly occupied
impurity state coupled to the spins of the medium as many-body state. In our NRG calculations
it is not easy to distinguish clearly this different nature of the singlet ground states and draw a
definite line to separate them. We can, however, get an indication for what is favoured from the
two-particle response functions in the spin and in the charge channel. In figure 10 we show the
imaginary part of the dynamic charge and spin susceptibility, χc(ω) and χs(ω), for �sc = 0.005
and a series of values for the interaction U .
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Figure 10. The imaginary part of the dynamic charge (left) and spin (right) susceptibility various
values of U ; �sc = 0.005 and π� = 0.2. The scale on both axes is the same such that the results
can be compared well.

Figure 11. The dependence of the bound state energies Eb (left) and weights wb (right) on ξd/U
for �sc = 0.01 and U/π� = 3, 5; π� = 0.2 is fixed.

We can see that the peaks in the charge susceptibility exceed the ones in the spin
susceptibility for zero and weak interaction indicating the dominance of the symmetry breaking
in the charge channel, and a ground state of superconducting singlet nature. However, for
U/π� > 1 the spin susceptibility develops a large and narrow peak at low frequency. This
signals the importance of the spin fluctuations and low energy spin excitations and indicates
ground states of a screened spin. In contrast the decreasing peaks in the charge susceptibility for
large U is consistent with the effect of suppression of the on-site superconducting correlations.

3.2. Away from particle–hole symmetry

So far we have considered the special situation of particle–hole symmetry, εd = −U/2. In this
section we will briefly discuss a few aspects that change in the situation away from particle–
hole symmetry. Let us consider the case where for a given gap �sc, on-site interaction U , and
hybridization �, the ground state of the system is a doublet at half filling, ξd = 0. When ξd

is increased, we find that a transition to a singlet state can occur at a certain value ξ c
d . This is

illustrated in the following figure 11, where we have plotted the bound state energy Eb for fixed

14
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Figure 12. Left: anomalous expectation values 〈d↑d↓〉 for various U/π�, �sc = 0.01 and
π� = 0.2. Right: phase diagram showing the regions for singlet and doublet ground state as
dependent on �/U and ξd /U for different values of the gap �sc. The full semicircular line
corresponds to the phase boundary for �sc = ∞ as discussed in equation (15).

�sc = 0.01, two values of U/π� = 3, 5 and a series of values of the on-site energy scaled by
U , ξd/U . As before we have π� = 0.2.

The critical interaction for the ground state transition for this case at half filling is
Uc/π� � 2.6, such that both cases possess a doublet ground state for ξd = 0. We can see
that with increasing asymmetry ξd the bound state energy |Eb| first decreases towards zero and
then increases again in the singlet regime for ξd > ξ c

d . As in the symmetric case the singlet–
doublet transition is accompanied by |Eb| = 0. The weights w±

b for these bound states are
shown on the right-hand side of figure 11. Away from particle–hole symmetry the weight w+

b
for the positive energy E+

b and w−
b the one for the negative bound state E−

b are not equal, as
was already pointed out below equation (11). We can see that the weights w±

b start to assume
different values when ξd is increased from 0. At the ground state transition the values change
discontinuously similar as observed in the half filled case. If we follow both the positive weight
w+

b and the negative w−
b separately the weights cross at the transition point. If, however, we

think of the bound states as crossing at zero Eb = 0, positive and negative weights exchanged at
the transition point, i.e. wb ↔ w−

b , then the weights do not cross. The discontinuous behaviour
remains, however. In the singlet phase there is a maximum for both the positive and the negative
bound state weight, more pronounced for w+

b .
Also in the asymmetric case it is possible to calculate the bound state position Eb from

equation (9) and the weights from equation (11) employing the renormalized parameters. We
do not show the plots here, but note that the results resemble figures 6 and 7 in the respect that
they give good agreement in the singlet regime, but deviations for parameters where the ground
state is a doublet.

In the following figure 12 (left) we show the dependence of the anomalous expectation
value 〈d↑d↓〉 on the asymmetry scaled by the interaction ξd/U for the same value of �sc as in
figure 11. The values for 〈d↑d↓〉 are scaled by the gap �sc. For the values of U shown, at half
filling the system has a doublet ground state and 〈d↑d↓〉 is negative. First it does not vary much
when ξd is increased, but at the transition to the singlet ground state we find, as in the half filled
case, a jump to a positive value and 〈d↑d↓〉 increases to a saturation value on further increasing
ξd . This value is smaller for larger U , similar to what has been found in the symmetric case.

On the right-hand side of figure 12 we present a global phase diagram of the parameter
regimes for singlet and doublet ground states for the non-symmetric case. This representation in
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the �/U–ξd/U -plane is motivated by the result for the phase boundary for the case �sc → ∞
derived in section 2.3, equation (15). The semicircle corresponding to this case is shown in the
figure together with the phase boundaries for some finite values of the gap �sc. These are seen
to have a similar form, but the boundary decreases to smaller values of �/U with �sc/π�.
Note that the parameters on the line on the x-axis, to which the phase boundary contracts in the
limit � → 0 or U → ∞, possess a doublet ground state for |ξd | /U < 1/2.

4. Conclusions

We have discussed and quantitatively analysed the different forms of behaviour that can
occur for an interacting impurity site in a medium with off-diagonal symmetry breaking in
the charge channel. This study is motivated by the experimental situations of impurities in
superconductors and nanoscale quantum dot systems with superconducting leads. In the local
spectral functions we found that the low energy spectrum is dominated by the superconducting
gap, and we saw that the lowest excitations in these cases are Andreev bound states within
the gap region. For higher energies the spectrum resembles the form usually found in a
metallic bath with broadened atomic limit peaks for large U/π�. The formation of the Kondo
resonance, whose width is proportional to TK, is in direct competition with the superconducting
spectral gap of magnitude �sc. Therefore, depending on the ratio of these parameters a screened
Kondo singlet or an unscreened local moment is observed.

The lowest spectral excitations, the Andreev bound states within the gap region, change
position and weight according to the other parameters. These have been analysed in detail in
both the symmetric and the asymmetric model. We have given a simple interpretation of their
position and weight in terms of renormalized parameters. It turned out that the assumptions
for the definition of these were satisfied better in the singlet ground state regime. The reason
for this should be subject to further investigation. In the quantum dot systems currents have
been observed involving multiple Andreev processes [19, 20]. It is expected that a quantitative
understanding of these currents requires accurate information about the weight and position of
the Andreev bound states, which have been provided here. To study the experimental situation
in detail and to describe the differential conductance dependent on the local bound state
behaviour can be subject of a separate publication, where also the details of the experimental
set-up are taken into account more carefully.

The behaviour of the ground state of the system, which can be a spin singlet or a doublet,
is summarized in the two phase diagrams in figures 9 and 12. For coinciding parameter ranges
our results for the ground state and the locally excited states are in agreement with earlier
NRG studies [13–15]. Differences can be seen in the spectral representation of the bound
states in the gap. Here we report delta function peaks, whereas an earlier study [27] presented
broadened peaks. The method of calculating spectral functions and the self-energy used and
explained in the appendix of this paper will be relevant for extensions of the calculation to the
lattice model within the dynamical mean field theory framework. There an effective Anderson
impurity model could be used to study the phases with superconducting symmetry breaking,
for instance, in the attractive Hubbard model.
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Appendix A. Relevant Green’s functions

For the Green’s functions it is convenient to work in Nambu space, C†
d = (c†

d,↑, cd,↓), with
2 × 2 matrices. The relevant retarded Green’s functions are then

Gd(ω) = 〈〈Cd ; C†
d 〉〉ω =

( 〈〈cd,↑; c†
d,↑〉〉ω 〈〈cd,↑; cd,↓〉〉ω

〈〈c†
d,↓; c†

d,↑〉〉ω 〈〈c†
d,↓; cd,↓〉〉ω

)
=

(
G11(ω) G12(ω)

G21(ω) G22(ω)

)
. (A.1)

In the NRG approach we calculate G11 and G21 directly and infer G22(ω) = −G11(−ω)∗,
which follows from Gret

A,B(ω) = −Gadv
B,A(−ω) and Gret/adv

A,B (ω) = −Gret/adv
A†,B† (−ω)∗ for fermionic

operators A, B . Similarly, we can find G12(ω) = G21(−ω)∗. In the derivation one has to be
careful and include a sign change for up down spin interchange in the corresponding operator
combination.

In the non-interacting case we can deduce the d-site Green’s function matrix exactly. To
do so rewrite the term Hsc by introducing the vector of operators and the symmetric matrix

Ck :=
(

ck,↑
c†
−k,↓

)
, Ak :=

(
εk −�sc

−�sc −εk

)
. (A.2)

Then Hsc can be written as

Hsc =
∑

k

C†
k AkCk. (A.3)

The matrix Green’s function in the superconducting lead is then given by g
k
(iωn) = (iωn1I2 −

Ak)
−1,

g
k
(iωn)

−1 = iωn1I2 − εkτ3 + �scτ1, (A.4)

where τi are Pauli matrices. It follows that

g
k
(iωn) = iωn1I2 + εkτ3 − �scτ1

(iωn)2 − (ε2
k + �2

sc)
. (A.5)

From the equations of motion we find the expression for the free d-site Green’s function as

G0
d(iωn)

−1 = iωn1I2 − εdτ3 − V 2τ3
1

N

∑

k

g
k
(iωn)τ3. (A.6)

In the wide band limit with a constant density of states the last term describing the hybridization
of medium and impurity takes the form

− V 2 1

N
τ3

∑

k

g
k
(iωn)τ3 = �

iωn1I2 + �scτ1

E(iωn)
, (A.7)

where � = πV 2ρc. We are mostly interested in the limit of zero temperature here, and the
function in the denominator E(z) after analytic continuation reads (ω real)

E(ω) =
⎧
⎨

⎩
−isgn(ω)

√
ω2 − �2

sc for |ω| > �sc√
�2

sc − ω2 for |ω| < �sc.
(A.8)

In the non-interacting case for T = 0, we have therefore

G0
d(ω)−1 = ω1I2 − εdτ3 + �

ω1I2 + �scτ1

E(ω)
. (A.9)
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The Green’s function is obtained by matrix inversion, which yields

G0
d(ω) = 1

D(ω)

[
ω

(
1 + �

E(ω)

)
1I2 − ��sc

E(ω)
τ1 + εdτ3

]
, (A.10)

where the determinant, D(ω) := det(G0
d(ω)−1) is given by

D(ω) = ω2

[
1 + �

E(ω)

]2

− �2�2
sc

E(ω)2
− ε2

d . (A.11)

The full Green’s function matrix Gd(ω)−1 at the impurity site is given by the Dyson matrix
equation

Gd(ω)−1 = G−1
0 (ω) − �(ω), (A.12)

where we have introduced the self-energy matrix �(ω).

Appendix B. Self-energy using the higher F -Green’s function

As described by Bulla et al [37] there is a method to calculate the self-energy employing a
higher F-Green’s function, and it can also be used for the case with superconducting bath. In
order to derive the equations of motions for the correlation functions, the identity

ω〈〈A; B〉〉ω + 〈〈[H, A], B〉〉ω = 〈[A, B]η〉 (B.1)

(η = + for fermions) is useful. The calculation taking into account all off-diagonal terms
yields the following matrix equation

G−1
0 (ω)Gd(ω) − U F(ω) = 1I2, (B.2)

with the matrix of higher Green’s functions F(ω),

F(ω) =
(

F11(ω) F12(ω)

F21(ω) F22(ω)

)
. (B.3)

We have introduced the matrix elements F11(ω) = 〈〈cd,↑n↓; c†
d,↑〉〉ω , F12(ω) =

〈〈cd,↑n↓; cd,↓〉〉ω, F21(ω) = −〈〈c†
d,↓n↑; c†

d,↑〉〉ω and F22(ω) = −〈〈c†
d,↓n↑; cd,↓〉〉ω . In the

NRG we calculate F11 and F21 and the others follow from F12(ω) = −F21(−ω)∗ and
F22(ω) = F11(−ω)∗. We can define the self-energy matrix by

�(ω) = U F(ω)Gd(ω)−1. (B.4)

The properties of the Green’s function and the higher F-Green’s function lead to the relations
�12(ω) = �21(−ω)∗ and �22(ω) = −�11(−ω)∗ for the self-energies. We can therefore
calculate the diagonal self-energy �(ω) = �11(ω) and the off-diagonal self-energy �off(ω) =
�21(ω) and deduce the other two matrix elements from them. With the relation (B.4) between
G, F and � the Dyson equation (A.12) is recovered from (B.2). Therefore, the Green’s
function can be calculated from the free Green’s function as given in (A.10) and the self-
energy as calculated from (B.4). This scheme is also useful for applications of dynamical
mean field theory with superconducting symmetry breaking, where the self-energy matrix has
to be calculated accurately to find a self-consistent solution.
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